Abstract:Cephalometric analysis is an excellent instrument in clinical diagnosis, treatment, and recovery from surgery. Nowadays, efforts to develop computerized dental X-ray image Cephalometric analysis systems for clinical and education usages. Much commercial software is created, but its high cost is unaffordable for some undergraduate students or low-income medical institutions; sure, the best option is the use of open source software alternatives. The study aimed to design free software Cephalopoint that applies vector algebra to perform the accuracy and precision of Cephalometric analysis. Three tests were used to validate the measurements made: accuracy test, consisting of comparing three selected cases and reply 32 times using the manual and software technique measurement; time test, consisted in obtaining the average time used to complete manual and software techniques of the previous test; and statistical test, consisted of measuring and applying the statistical analysis of 42 random cases for each method only using the software technique. The results showed high repeatability and no significant difference between manual tracing and software techniques. All the variables calculated with the software technique exhibited a normal distribution. Cephalopoint is excellent software for accurate and precise Cephalometric measurements. Moreover, it significantly decreased the measurement time compared with the manual.Keywords: clinical analysis; software validation; Cephalometry
Currently Nemotec has more than 50 employees from different specialized branches, sales in more than 60 countries and has a network of 14 distributors spread in strategic areas worldwide. The company presents its new version of the unique digital multidisciplinary platform for dentistry in the world known as NemoStudio.
WORK Software Nemoceph 13
To the advantages included in the previous version, among which it stands out that the files generated by any of the computer software can be exported as an STL format, satisfying the demand of dental clinics, laboratories and dental technology companies, which seek to simplify and enhance their digital workflow in dentistry, we can add the following:
The Spanish dental software company closes 2017 with a significant growthNemotec, leading company of dental software, presents, for the second year in a row, an increase in its sales exceeding 20%. The company's commitment, with excellent results, has mainly grown due to its internationalization processes, an objective also for 2018 together with the development in R...
Para el análisis de Steiner, primero se realizó el análisis cefalométrico digital mediante el software Nemoceph (Nemotec, Madrid, España, 2016, sistema operativo para Windows). Las imágenes digitales fueron analizadas una a una, para lo cual se importa la imagen al programa, se realiza la calibración (digitalizando dos puntos en la regla incluida en la imagen), se selecciona el tipo de análisis (Steiner) y se ubican los puntos anatómicos, dejando que el software genere automáticamente las medidas angulares y lineales ([Fig. 1]). Luego se realizó el análisis manual en radiografías impresas exportadas del software con estructuras anatómicas previamente delimitadas, para lo cual se usó una hoja de acetato sobre la radiografía y, con un lápiz, se ubicaron las principales estructuras anatómicas y los puntos anatómicos de referencia con una regla milimetrada se conectan los puntos entre sí y se obtienen líneas y planos, la intersección de ellos genera datos lineales y angulares que fueron medidos utilizando una regla y un graduador ([Fig. 2]). Cabe mencionar que los trazados realizados con el software y los trazados manuales (10 pacientes por día) fueron del mismo paciente en una escala de medición de 1:1.
Se obtuvieron resultados de mediciones tanto angulares (), lineales (mm), la media con intervalo de confianza al 95%, mediana, desviación estándar, valor mínimo y el valor máximo de cada medición del análisis cefalométrico Steiner en las radiografías laterales trabajadas de manera digital mediante el uso del software Nemoceph, ([Tabla 2]), y del trazado manual mediante el uso de radiografías laterales impresas en papel de acetato, ([Tabla 3]).
Determinar la existencia de diferencias significativas entre el trazado cefalométrico manual y digital adquiere importancia con el advenimiento tanto de equipos como softwares digitales que brindan facilidades al momento de realizar los diversos análisis cefalométricos. Además, hay que tener en consideración que, en la era digital, cada día está en aumento el uso de radiografías digitales, imágenes que se deben manipular de la forma más segura posible, lo que se logra mediante el manejo adecuado de los softwares. Ellos tienen varias herramientas, desde aquellas que permiten mejorar una imagen hasta las que permiten realizar un trazado cefalométrico de forma inmediata, ofreciendo probablemente rapidez y eficacia en los diagnósticos, así como también validez y reproducibilidad.
Es por ello que existen diferentes estudios que abarcan el análisis de la diferencia de trazados cefalométricos hechos de manera manual y de manera digital. Sin embargo, dependiendo del autor consultado, varía el tipo análisis cefalométrico (Rickets, Steiner, Tweed, entre otros) y también el tipo de software (Nemoceph, Vistadent, Dolphin, entre otros), aunque existen mediciones angulares y lineales comunes.
Todos los estudios previamente mencionados realizaron el análisis cefalométrico manual usando los mismos materiales (negatoscopio y papel de acetato). La diferencia fue en la realización del trazado cefalométrico digital ya que algunos usaron radiografías digitales (directas e indirectas) importadas del software y otros simplemente realizaron el escaneo de radiografías análogas. Eso, junto con el factor humano, podría explicar el motivo por el cual los estudios no coinciden en las mediciones con diferencia significativa entre ambas técnicas.
Además, hay que tener en consideración los diferentes tipos de software utilizados por parte de otros autores (Radioceph, Dolphin, entre otros) y los diferentes tipos de equipos (Planmeca, Sirona, Morita, entre otros) ya que cada programa y/o equipo tienen sus propias herramientas, sistema de funcionamiento y sistema de mediciones.
2021. Asociación Civil Sociedad Argentina de Radiología and Federacion Argentina de Asociaciones de Radiología, Diagnóstico por Imágenes y Terapia Radiante. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. ( -nc-nd/4.0/)
Landmark identification is of utmost importance in cephalometric analysis but it turns out to be the main source of error. With modern inventions in the field of artificial intelligence (AI), it becomes essential to assess the reliability of computer-automated programs. A greater deal of time can be conserved with fully automated programs such as WebCeph, which uses an AI-based algorithm that performs automated and immediate cephalometric analysis. This study aimed to evaluate the accuracy, reliability, and duration of tracing cephalometric radiographs with WebCeph, an AI-based software in comparison to digital tracing with FACAD and manual tracing. The null hypothesis proposed is that there is no statistically significant difference among the three methods with regard to accuracy of cephalometric analysis.
Computerizing cephalometric have been employed to solve the previous issues, and to offer numerous advantages such as reduce the efforts and times of orthodontic, X-ray enhancement, consistent measurements, pre-surgical simulation, obtain more accurate and reliable results, and more efficient storage, transferring, and archiving data [11, 12]. Since 1986, the Image processing techniques have been applied on cephalometric analysis and landmarks measurements. Several image processing approaches were used to extract the important features of X-Ray images to detect the landmarks for geometrical measurements [13, 14]. Early works were used edge detection technique to locate the landmarks points, and cephalometric classes are then identified by geometrical relations of angles, lines, and intersection and exterior boundaries. Thus, researchers have been focused to develop several systems to automate the analysing and measurements process of cephalometric using several approaches such as resolution pyramid, and Edge enhancement [15], Pattern matching [16], Active shape models [17], Active contours with similarity function [18], PCNN (pulse coupled neural networks) [19], Support vector machines [20], Filtering, Edge tracking, pattern matching, and Active shape models [21].
This work shows that automatic system for cephalometric analysis and simulation can be achieved if suitable computer system is developed. Ceph-X proved its reliability and usability with clinically acceptable errors to be replaced the manual process for cephalometric measurements. Future studies will be carried out on larger cohort to optimise and eventually increase the land mark point list. Future study will also include study on differences in results obtained based on ethnicity and the possibility to use 3D CT scans.
The assessment of craniofacial structure forms an integral part of the orthodontic diagnosis. From the time lateral cephalogram was invented, lateral cephalometric analysis continues to be one of the gold standard diagnostic aids in orthodontics. Manual cephalometric analysis consumes valuable time due to the tedious procedures associated with it. Various cephalometric software is currently available in the market, which is easy to use and saves time.3,4,5,6,7,8,9,10 These software are expensive and would require a laptop or a desktop which makes it laborious and less accessible. Practitioners in most developing and underdeveloped countries find it difficult to afford such software. 2ff7e9595c
コメント